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Abstract 
Purpose – This paper estimates the determinants of international tourist arrivals to Colombia from 

1995 to 2014. 

Design – Tourist demand is related to interlinking relationships between origins and destinations. 

The international movement of travelers has grown exponentially in recent decades, and these 

dynamics have affected Colombia as well. 

Methodology/Approach – We propose a generalized linear mixed model, with a consideration of 

factors from the theory of consumer choice and those approached from the perspective of new 

economic geography. 

Findings – Apart from purchasing power and institutional factors as facilitators of travel, we found 

that general aspects of the country (such as language and geographical proximity) directly affect 

the flow of visitors, whereas exchange differences and physical distance reduce tourist attraction. 

Originality of the research – Estimation of tourist flows will serve as a diagnostic and planning 

tool for developing proposals of tourism attractiveness related to different environment. 

Keywords tourism demand, tourist flows, generalized linear mixed model, developing countries 

 

 

1. INTRODUCTION 
 

There are two interlinked essential arguments on tourism demand that underlie each other 

and together show the importance of the decisions of economic agents and geographical 

matters in how tourist flows are configured. In the first argument, the nature of tourism 

is examined in terms of how potential visitors who are located at a physical distance, 

where the consumption decision is made, make the decision to travel to enjoy their choice 

of a selected final destination (Swarbrooke and Horner 2007). The second argument 

examines the relative importance of geographic factors, given that countries have a 

natural-geographic endowment that is related in the future course of their spatial 

development (Venables 1998). In relation to flows of goods, financial resources and 

travelers, economic geography is undergoing reconsideration in studies and simulations 

at the regional level, with an awareness of the role played by geographical factors in the 

configuration of development patterns at the regional and national level (Yang et al. 

2010). The consideration of traveler flows and relationships of economic geography is 

thus justifiable, as the present study will allow for a systematic examination of the 

strengths and weaknesses of regional, territorial units with respect to their attractiveness 

for visitors, which allows the invigoration of different economic enclaves of their 
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production apparatuses. On this subject, Claveria et al. (2015) highlight the importance 

of the origin–destination distance as an explanatory variable that helps differentiate 

between groups of tourism. 

 

At the international level, Vargas et al. (2007) and Keum (2010) have posited an analysis 

of tourist flows based on panel data models, finding significant variables that explain 

tourist behavior. However, such models have had few applications in the analysis of the 

behavior of these variables, particularly in terms of the use of the mixed linear model for 

these types of studies with data from Colombia (Vanegas et al. 2018). These models 

address the estimation from the multivariate theory, facilitating the inclusion of several 

countries in the estimation of a model to assess the determining factor and explain the 

variations of the tourist flows to a country. This multivariate approach has the advantage 

in that it considers the autocorrelations of the response variables, as other works have 

demonstrated, for example, for multivariate tourism forecasting (Claveria et al. 2015). 

 

The travel and tourism industry encompasses significant economic activity in most 

countries, with direct and indirect incidences in productive apparatus (WTTC 2014). In 

this sense, forecasting process approaches and their relations with geographic and 

political attitudes or behavioral variables may be relevant in carrying out an appropriate 

planning resource to improve the economy of a region (Padhi and Pati 2017). This serves 

as a reason to search for more forms to increase the accuracy of forecasts, as some 

investigations demonstrate (Athanasopoulos et al. 2011; Chu 2014; Guizzardi and 

Mazzocchi 2010; Song et al. 2012). 

 

Its contribution to the Colombian economy has exhibited some of the most dynamic 

behavior of any sector, with impactful contributions to employment and wealth 

generation. In the last 20 years, the dynamics of traveler flows as well as the expenditures 

associated with the destinations visited have showed sustained growth and significant 

financial contributions. Touristic movements of people and expenditures for travel items 

(dollars) have grown at an annual average rate of 8.2% and 46.7%, respectively, for 20 

years between 1995 and 2014, although both slowed down somewhat during the 1999 

Colombian banking crisis, but the trend was reverted to, and tourism recovered, reaching 

historical highs in the mid-2000s (Figure 1). 

 

Figure 1: Colombia: Inflows of traveler and tourist expenditures 1995–2014 
 

 
 

Source: own elaboration using data from UNWTO (2016). 
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From a methodological point of view and by identifying explanatory factors and demand 

effects, Li et al. (2005) argued that the implementation of specialized econometric 

techniques allowed for a broader picture of international tourist flow behavior. By 

understanding the factors that determine the demand for tourism, public policies can be 

designed toward the creation of strategies that affect the development of tourism for 

countries. In particular, since 2010, tourist flows in Colombia have grown by 150%, from 

2 million to 6.5 million (MinCIT 2018). In this sense, modeling tourism demand in 

countries with a promising sector growth may constitute an important aspect for 

improvement in order to achieve efficient profitability (Akın 2015). 

 

Previous behavior contextualizes the importance of studying the main factors that 

explain tourist flows. This work estimates the determining factors attracting international 

tourists to Colombia, from the theoretical perspectives of both consumer behavior and 

the new economic geography, assessing the importance that these factors have in relation 

to tourism demand. This will help with decision making for economic agents, 

management decisions, marketing strategies, and planning improvements based on the 

impacts of geographic conditions and distances between countries over the tourist’s 

arrivals and on the linear mixed models’ analysis. Thus, the central questions are as 

follows: What are the main determinants of international tourism demand into 

Colombia? Are there spatial differences in the settings of traveler determination? 

 

Tourism planning requires high investment levels on equipment, infrastructure, hotels, 

resorts, and staff training. These, in turn, require time horizons that fit both real and 

potential demand forecasting. Such strategic planning entails studies with advanced 

methods that serve the purpose of defining entrepreneurial goals in the fields of 

infrastructure, marketing, staff, and suppliers. Furthermore, these studies should also 

help predict the economic impacts derived from changes in the tourism market. Tourist 

flows into and out of Colombia have shown a surprising growth in the last few years, 

which tend to grow stronger at short- and mid-term intervals because of the 

implementation of the Colombian Peace Agreements. In spite of this, the literature that 

explores the determining factors within this topic is scarce, which is the reason that the 

present study expects to contribute to the field in the context of Colombia. 

 

This manuscript is organized into five sections. Empirical studies concerning tourism 

demand are presented after the Introduction. The methodological approach is 

subsequently outlined, and the statistical techniques and sources of information are 

explained. The fourth section discusses the results, and conclusions are offered in the 

final section. 

 

 

2. LITERATURE REVIEW 

 

A central question in the determination of tourist flows focuses on the choice of 

destinations by travelers. An extensive number of works that estimate these flows on a 

country-by-country basis examine the determinants within the framework of partial or 

general equilibrium models, panel data, simultaneous equations, probabilistic models, 

and auto-regressive factors, among others (Su and Lin 2014; Ibrahim 2011; Massidda 

and Etzo 2012; Peng et al. 2015). Studies in this vein typically examine how exogenous 
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macroeconomic factors affect tourist decisions, focusing primarily on incomes and 

movements in exchange rates. At the international level, the literature concerning world 

tourist flows, without specifying countries, is much broader, estimating global, 

continental, and national determinants. The literature exhibits a great variety of 

approaches for stimulating the determinants of the tourism demand of the world, a 

continent, or a country; within this, there are several factors that can be grouped into 

different areas such as economic, political, security-related, and geographical factors. 

 

In the case of the application of gravity models, Morley et al. (2014) proposed a 

theoretical framework accounting for bilateral tourist flows based on the individual 

utility theory. The importance of this model in the estimation of tourism demand is 

highlighted, requiring a modeling of the role of structural factors in tourism. Morley et 

al.’s (2014) work demonstrated the difficulty of distinguishing the recent versions of 

gravity models and their suitability when discussing the structural factors to be assessed 

and quantified in relation to touristic demand. Other empirical studies that have focused 

on assessing the gravity determinants of tourism include Keum (2010), Deluna and Jeon 

(2014), Kaplan and Aktas (2016), and Tavares and Leitão (2017). 

 

Few works have addressed the case of Colombia. Bonilla and Moreno (2010) studied the 

effects of security and trade; using a panel data model, they found that the arrival of 

foreign travelers was inversely related with kidnappings and commercial exchange 

indices were conducted in a positive manner. Other works have examined the local 

dynamics of the movements of travelers. Cerda and Leguizamón (2005), using hedonic 

models, found that the internal demand for national actors for the consumption of tourism 

products depended greatly on the profile of the head of household, household purchasing 

power, and household composition. In municipalities or at specific locations, for 

example, in the case of Cartagena, researchers have observed the impact of fluctuations 

in the exchange rate on tourism demand (Galvis and Aguilera 1999). Finally, classical 

and Bayesian regression models have been used in the estimation of the tourism demand 

for the city of Medellín (Valencia et al. 2017), and Vanegas et al. (2018) compared 

different models for the estimation of tourist flows to Colombia. 

 

There is a growing body of literature on work at the country level. Garin-Munoz and 

Amaral (2000) estimated that incomes, prices, exchange rates, and the Gulf War were all 

significant for explaining international tourist flows to Spain. For the African continent 

as a whole, the results of Naudé and Saayman (2005) suggested that the arrival of 

travelers depends on the political stability, tourism infrastructure, marketing and 

information, and the level of development in the destination. For the case of Egypt, 

Ibrahim (2011) found that the economic conditions of the host country, the prices there, 

and its cost of living were important for attracting travelers. Hanafiah and Harun (2010) 

found results similar to that of Ibrahim (2011) for Malaysia, whereas Webb and 

Chotithamwattana (2013) assessed how purchasing power and exogenous factors, such 

as economic and political crises, affected visitor flow to Thailand. 

 

Kaplan and Aktas (2016) estimated tourist demand for Turkey by using annual data on 

international arrivals from 92 countries; they concluded that the financial crisis of 2008 

increased the competitive advantage of the country in its exchange rate, which promoted 

such activity. For China, Yang et al. (2010) assessed the determinants of international 
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tourist arrivals, particularly for the locations cataloged as World Heritage sites, and 

showed that relative incomes, populations of the country of origin, cost of travel, and 

tourism infrastructure were the main factors and that the importance of these factors 

differed from country to country in terms of the ability to explain demand. Furthermore, 

for Latin American countries, in particular, those from the Andean Community of 

Nations, Gardella and Aguayo (2002) showed a heavy dependence on US economic 

performance and promotion as a destination to be an explanatory tourist arrival variable. 

Similar results were observed for Mexico (Soria et al. 2011), where, in addition to these 

factors, the cost of living in the country of origin had a considerable weight in the 

explanation of arrivals. Finally, Onafowora and Owoye (2012) found that real income, 

prices, and transport costs explained the arrival of travelers. 

 

However, in the relationship of tourism with any economic activity variable, Eilat and 

Einav (2003), through discrete choice models, found that political risk was an extremely 

important factor for tourism and that exchange rates were representative for the 

developed countries. Using panel data models, Vargas et al. (2007) concluded that 

income was the dominant variable in tourist flows, which was relevant for the 

explanation of the direction of tourist flows relative to the attraction, security, and the 

level of development of the destination country. Variables related to economic activities 

that could be used as explanatory in the dynamics of tourism were also found. Finally, a 

last approximation for this issue showed that the tourism demand akin to a concentrated 

network of nearby countries (Lozano and Gutiérrez 2018). 

 

This review shows a series of economic factors that are the determinants of tourist flows. 

The following factors are highlighted: exchange rates, economic performance, 

purchasing power or income, and the cost of living. These are the political or institutional 

factors most noted to have a determining influence on tourism: the level of development 

of the country of destination, economic and political crises, and political stability and 

risk. 

 

 

3. METHODS 

 
3.1. Approach 

 

The methodological approach followed in this work used a multivariate statistical model: 

a generalized linear mixed model (Verbeke 1997). This model established what factors 

could determine the flows of international tourists to Colombia according to the 

consumer and the territory and described the kinds of association, analyzing whether the 

factors were significant for the explanation of the behavior of tourist flows. It is necessary 

to perform exhaustive data cleaning to create the specific estimations and account for the 

heterogeneity of the behavior of variables in different countries, a variety that only 

increases when a comparison is made with tourism partners. The suggested functional 

form should contain information on two dimensions: country of dispatch and time. 
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Mathematically, the standard way of establishing this relation is as follows: 

 

FVcpt = f (β0, β1CCct, β2CGpt, β3VCcpt)   (1) 

 

The indices c and p represent Colombia as a country of arrival and the country of origin, 

respectively, and t is the specific year of the observation. The independent variable FV 

represents international tourist flows between two countries. The following are the 

independent variables: CC, a matrix with the characteristics of the consumer from the 

country of origin; CG, a matrix with the geographic characteristics of the country of 

arrival; and VC, a matrix with common variables for the country of origin and the country 

of destination. 

 
3.2. Data Structure 
 

The data used for the response variables have longitudinal values, with observations of 

the annual arrivals in Colombia of international tourists originating from 166 different 

countries in 1995–2014. Other factors were created using a cross-section: that is, they 

are fixed for the analyzed period. These include the distance between the country of 

origin and the destination. The response variable is ln(ARRIVALS)cpt for all the countries 

selected, where the conventions are defined as follows. 

 

The sub-indices include C: Colombia as a tourist destination; P: traveler’s homeland; 

and t: the observation time 1995–2014. It should be noted that variables without the sub-

index t do not have temporal variation. The other covariables explored are as follows: 

 

ARRIVALS: the number of international tourist arrivals. 

GDP-PER CAPITA: the gross domestic product per capita of the traveler’s home 

country. 

EXCHANGE RATE: the real effective exchange rate, deflated by the consumer price 

index of each country’s 172 trading partners (REER172) 

RELATIVE PRICES: the comparative inflation rate that results from dividing the 

price indices of Colombia and the visitor country’s t. 

POLITICAL: an indicator that considers the possibility of alterations in political 

and/or security conditions based on expert perceptions. 

DISTANCE: the distance weighted between the main Colombia’s economic centers 

and the traveler’s home country. 

BORDER, LANGUAGE, VISA, and FLIGHT: a set of categorical variables that take 

two values, namely, one (1) if Colombia and the tourist’s country have a common 

border, language, entry visa application, and direct flights and zero (0) otherwise. 

 
3.3. Information Sources 
 

International databases that compile specific information were the sources of information 

for this work. The flow data of bilateral travelers were provided by the World Tourism 

Organization (UNWTO 2016). Two sources were used for GDP per capita: The World 

Development Indicators (World Bank 2015) and the Economic Research Service (USDA 

2014). The exchange rate indicator was taken from Bruegel (2014). Both relative prices 

and political stability indices were calculated from World Bank data (2015, 2016).The 
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weighted distance between countries corresponds to that calculated by Centre d’Etudes 

Prospectives et d’Informations Internationales (CEPII 2015). Finally, in order to match 

the data with dependent and independent variables a balanced set of data was structured 

for the 1995-2004 period. 

 
3.4. Linear Mixed Models 

 

3.4.1. The Linear Mixed Model (LMM) 

 

The response variable in the LMM presents two types of correlation structures: intra-

country (within a country) and between countries. The LMM is either fixed or random. 

Random effects are produced when covariables represent significant effects during the 

periods evaluated with a correlation structure. 

 

Fixed and random effects in the LMM can explain annual tourist flows. The estimation 

process was carried out in the R program, using the package lme4 and the function lmer, 

and was developed with a maximum likelihood process that considers intra-country 

correlations. Two types of models were proposed: one Gaussian and one generalized. 

 

The general form of the LMM is given by Valencia (2010): 

 

Y         =     X * β          +           Z *   b       +     ε   (2) 

(T × 1)   (T × m)(m × 1)       (T × Nr)(Nr × 1)  (T × 1) 

 

The response vector Y has the sub-vectors Ycpt as components, representing tourist flows 

to Colombia as the destination, where c represents Colombia as the tourist destination, p 

is the tourists’ homeland, and t is the observation time, with p = 1, …N countries and t 

= 1, …ni, wherein ni is the amount of periods for the tourist arrivals series per country. T 

is the total data (N*ni), r is the total of random effects in the model, m is the amount of 

parameters fixed in the model, X is the design matrix for the fixed-effect component, Z 

is the variable matrix for the random component, ε is random error, which has a normal 

distribution, and b is the random effect that also follows such distribution, when the 

response presents Gaussian behavior. 

 

3.4.2. The Generalized Linear Mixed Model (GLMM) 

 

This model may be appropriate for the approximation of the results, when the discrete 

scale of the response variable is high because of its approximation to the Normal 

distribution (Valencia et al. 2017). Otherwise, it would be necessary to create a 

transformation to obtain better estimations and to guarantee compliance with theoretical 

assumptions regarding the adjustment of residuals and random effects to this distribution. 

For a GLMM, as for a LMM, the response variable 𝑦𝑖 is neither continuous nor 

symmetrical in its distribution (Gómez-Restrepo and Cogollo-Flórez 2012). The 

response has Poisson distribution behavior, and it should have natural scale values 

related to the distribution’s frequencies (Jiang 2007). Equation (3) represents the 

GLMM: 

 

 = 𝑋𝛽 + 𝑍𝑏 + 𝜀 (3) 
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where , as the natural logarithm, is the link function according to the response vector. 

X and Z are design matrices for the fixed components () and the random components 

(b), respectively (Karim and Zeger 1992). Subsequently, in the parameter estimation 

process, the new estimated coefficients must be returned through the exponential 

function. 

 

The GLMM is estimated using a Monte Carlo maximum likelihood process for fixed 

effects and random components. It was implemented in R, with the lme4 package (Bates 

et al. 2015), which allowed it to specify a Poisson probability distribution as a response. 

It also defined which variables correspond to fixed effects and which correspond to 

random effects. 

 

In an LMM or a GLMM, although one often finds a longitudinal response function or 

time-dependent, correlated intra-subjects or individuals, random effects can be 

associated with the subject or can be related to time-dependent variables such as time, 

which occurs in this study. One advantage of a GLMM is that it can estimate fixed effects 

for a general representation as well as random effects for every unit of analysis. 

Regression models (RM) are not useful for this type of multivariate estimation because 

the data has correlation structures for every subject and, between them, variance-

covariance matrices of the random component. Furthermore, considering the 

heterogeneity of the variance and the errors, RMs do not contemplate such components 

in the estimation. GLMM allows estimating tests for fixed and random effects, as well 

as correlation structures in the data. A random intercept is one method to estimate a 

GLMM, as in the equation  = 𝛽0 + 𝑢0 + 𝑋𝛽 + 𝑍𝐵 + 𝜀, where X and Z are the design 

matrices for fixed effects and random effects, respectively. The variance-covariance 

matrices for error and random effects correspond to a simple dimension. 

 

3.4.3. Bayesian Generalized Linear Mixed Models 

 

A Bayesian GLMM was also estimated, arising from the same type of equation as that 

expressed in (2); however, because of the theoretical premises of Bayesian statistics, an 

“a prior” distribution is assigned to the parameters and another distribution is assigned 

to the data as the Normal one or a non-informative distribution. With the product of these 

distributions, it is possible to build a posterior distribution for the same parameters in 

order to perform a Monte Carlo sampling using Markov chains (McNeil and Wendin 

2007). This model was estimated using the bglmer function from R’s blme package 

(Dorie 2015), as used in Chung et al. (2013), who estimate the Bayesian mixed model 

and produce the statistics of the parameters as well as the adjustments of the final 

response for the entirety of the travelers to compare the performance of all the models 

with respect to the GLMM. The blme package in R uses a MCMC simulation to fit 

Bayesian and generalized linear mixed models. Certain advantages exhibited by this 

Bayesian approach are that the parameters are obtained using simulations, which allow 

for a modification of the prior distribution of the parameters. 

 

Although equations’ and components’ forms are similar to the general linear mixed 

model, probability distributions for errors and random effects could vary according to a 

researcher’s interests. Program R establishes different kind of distributions: 
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 The random effects covariance matrix could belong to prior distributions, such as 

Whishart, Inverted Whishart, Gamma, Inverted Gamma, or NULL. 

 The Parameter distribution can use the priors: Normal Distribution, t, or null. 

 The residuals’ variance could belong to prior distributions: Gamma, Inverted 

Gamma distributions, or non-informative. 

 
3.5. Comparative Indicator 
 

The symmetrical mean absolute percentage error (SMAPE) is calculated according to 

equation (4): 

 

 𝑆𝑀𝐴𝑃𝐸 =
1

𝑇
∑

|𝑍𝑡−𝑍̂𝑡|

(𝑍𝑡+𝑍̂𝑡)/2

𝑇
𝑡=1    (4) 

 

where T is the total data, Zt is the real value of the time series, and 𝑍̂𝑡 is the adjustment 

of the series in the respective model. 

The root-mean-square error (RMSE) is estimated according to equation (5): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑍𝑡 − 𝑍̂𝑡)

2𝑇
𝑡=1    (5) 

 

 

4. RESULTS AND DISCUSSION 

 
4.1. General Descriptive Results 

 

This section shows the descriptive exercise and estimation of the specified models. First, 

general basic statistics, followed by the results of the modeling, are given. With 

disaggregated data according to visitors’ homelands, Figure 2 shows that approximately 

90% of visitor entrances came from 16 nationalities, and geographical proximity to the 

destination was the distinctive feature. 

 

Figure 2: Homelands of the main visitors to Colombia 1995–2014 
 

 
Source: own elaboration with UNWTO database (2016). 
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In addition, these trends in the relationship between the arrival of international tourists 

and physical distance to the main destinations in Colombia from different origins are 

synthesized more clearly in Figure 3 and Map 1. The largest bubbles represent the largest 

volume of visitors to Colombia, where 71.8% of visitors are from countries within an 

average of 2,739 kilometers of linear distance; this relationship is consistent with the 

gravity model indicating a greater tourist flows where the distances between the origin 

and the destination are smaller. 

 

Map 1:  Distance between Colombia and the origins of Columbian visitors  

in 1995–2014 

 
 

Source: own elaboration using data from UNWTO (2016) and the Google Drive mapping tool. 
 

Table 1 summarizes the descriptive statistics of the balanced panel. As mentioned in the 

methodology, quantitative variables were transformed through natural logarithms. A 

considerable variation is to be observed for most variables, owing to the heterogeneity 

in the sample of countries studied. 

 

Table 1: Descriptive statistics of the variables used 
 

Variable Obs. Mean Std Dev. Min Max 

Arrivals (number of people) 2988 4.743 2.946 0.000 12.787 

GDP per capita (dollars 2010) 2988 8.466 1.556 4.808 11.608 

Exchange rate (index base 2010) 2988 3.167 2.843 −1.973 10.673 

Relative prices (index) 2988 0.010 0.430 −1.138 7.034 

Political stability (index) 2966 −0.311 0.151 −1.145 −0.023 

Distance (km) 2988 8.946 0.758 6.598 9.871 

Border 2988 0.030 0.171 0.000 1.000 

Language 2988 0.139 0.345 0.000 1.000 

Visa 2988 0.488 0.500 0.000 1.000 

Direct flight 2988 0.145 0.352 0.000 1.000 
 

Source: own elaboration. The quantitative variables are expressed in natural logarithms. 
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4.2. Linear Mixed Model 

 

The response variable used in the first estimated LMM is the natural logarithm of tourist 

arrivals. In all, 166 countries were examined, each one of them with 18 instances of data, 

for a total of 2,988. Among the explicative variables used to estimate the model, GDP 

per capita, and the real exchange rate are determined for each year, as were the clusters 

found using R’s pam function. Missing data were allocated using statistics, as the median 

of the arrival’s variable. 

 

Cluster variables were generated in the estimation of the models due to the heterogeneity 

of the response variable. The process is completed before the model is estimated and 

consists of grouping data according to their common characteristics; therefore, seven 

groups are generated by grouping similarities and clusters are used as a factor for 

improving the adjustment. For example, countries with the shortest distance to Colombia 

are located in cluster five. 

 

The LMM under the Normal distribution has a low adjustment capacity because of the 

response variable nature, since it does not have a continuous form. In this sense, high 

scores are found for SMAPE = 113.9% and RMSE = 4654.7, indicating a considerably 

poor adjustment. Hence, a transformation is unnecessary; Gaussian approximation is 

inappropriate in this case. For this, it is necessary to create a model with a Poisson 

response. 

 
4.3. Generalized Linear Mixed Model (GLMM), with a Poisson response 

 

Given the counting response for the variable of tourist arrival, a Poisson response model 

was estimated. For this, the response variable is the number of tourist arrivals, which was 

given as an integer. The explicative variables were similar to those from the previous 

model. When estimating the GLMM, a single random effect was used, the intercept, 

obtaining the estimated coefficients seen in Table 2; these may be seen as significant at 

a 5% level. The distance variable (transformed by the logarithm), became non-

significant; therefore, it was eliminated from the model and another model was re-

estimated without it. In other models with more random effects, this variable has 

significance at a 5% level. Column 2 of Table 2 shows the effect value, indicating that 

variables with a higher effect on increase are the natural logarithm of year, followed by 

direct fly (binary; it is 1 if there is a direct fly, otherwise 0), followed by language (binary; 

whether the countries share a language with 1 or not with 0). Column 5 shows the p 

values, demonstrating that all variables are significant because they are lower than the 

alpha significance level of 5%. It is not clear that distance has explanatory power, but 

this is found for variables such as visa, which indicates a decrease in the travelers if visa 

is required; and language, which increases the number of travelers if there is a common 

language. 
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Table 2: Parameters estimated in the mixed Poisson model 
 

Fixed effects 

Coefficient Estimate Std, Error z value Pr(>|z|) 

(Intercept) −749.5000 1.439 −520.9 < 2e-16 

cos(2 * pi * year/12) −0.0448 0.0003944 −113.5 < 2e-16 

Year 98.5500 0.1894 520.2 < 2e-16 

GDP per capita 0.6210 0.003594 172.8 < 2e-16 

Real exchange rate −0.0853 0.001948 −43.8 < 2e-16 

Price −0.1579 0.0008368 −188.7 < 2e-16 

Political index 0.2659 0.005857 45.4 < 2e-16 

Language 1.6220 0.4914 3.3 0.000965 

Visa −1.8000 0.285 −6.3 2.71E-10 

Cluster2 2.0290 0.02392 84.8 < 2e-16 

Cluster3 −0.1083 0.01417 −7.6 2.12E-14 

Cluster4 0.5340 0.01349 39.6 < 2e-16 

Cluster5 1.0210 0.01345 75.9 < 2e-16 

Cluster6 0.6601 0.01324 49.9 < 2e-16 

Cluster7 1.2680 0.01353 93.7 < 2e-16 

Direct flight 2.6010 0.4966 5.2 1.63E-07 
 

Source: own elaboration using the lme4 package for R. 

 

Further, this shows that visa requirements reduce the arrivals, since the mean of the 

behavior of arrivals for visa requirements, 156.63, is lower than the mean of the arrivals 

for countries without visa requirements, 11178.78. This result also confirms the 

correlation among arrivals and the logarithm of distance, which is negative, −0.27, and 

the correlation among language sharing, which is positive, 0.425, as well as the negative 

correlation among real exchange and arrivals, −0.0668. These results indicate that a 

substantial amount of tourism comes from countries that are close to Colombia; it would 

be interesting to know the specific activity of the tourist in order to conduct a more 

advanced diagnostic and subsequently propose strategies aimed at improving care. 

 

The estimated generalized mixed model has a better adjustment; this is reflected in a 

decrease in the SMAPE indicator, 49.7%, and an RMSE of 2979.98. Similar to this 

GLMM, other models were estimated by adding more random effects. Summary 

adjustment statistics are shown in Table 3. The best-fit model has four effects. 

 

Table 3: Table of estimated parameters 
 

Number of Random effects 1 2 3 4 

SMAPE(%) 49.723 41.815 39.517 37.596 

RMSE 2979.98 2688.07 2730.48 2541.21 
 

Source: own elaboration using the lme4 package for R. 
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4.4. Bayesian Generalized Linear Mixed Model, with Poisson Response and a 

Random Effect 

 

The response variable, arrivals, is the same as the one used in the previous models. The 

prior distribution of fixed parameters is the Normal one. The covariance matrix has a 

non-informative distribution for this model. Table 4 lists the fixed-effect values in 

Column 2 (Estimate) and the p values (referred to as Pr(>|z|) in Column 5), with values 

lower than 5% indicating the significance of all the variables that remain in the model. It 

is observed that distance is significant and shows a negative value, which indicates that 

the greater the distance, the fewer the tourists, consistent with the descriptive statistics. 

In addition, effects on time are positive, showing increase in tourism over the years. 

According to Eilat and Einav (2003) and Vargas et al. (2007), exchange rate indices have 

a negative effect; that is, the lower the value of the exchange rate, the higher the tourist 

flow. This model estimation is opposite because the higher the value of the exchange 

rate, the lower the value of tourists. In addition, the political index and GDP are positive, 

showing that countries with a greater political stability and a higher growth are those that 

visit Colombia most often; this has also been documented in other studies, such as Naudé 

and Saayman (2005) and Eilat and Einav (2003). In this specific case, it should be noted 

that the there is a change in the perception of the country’s security conditions, such that 

the number of visitors shows an increasing trend over the years, despite this variable 

being perceived as a risk by tourists (Vanegas 2015). 

 

Table 4: Coefficients of estimated parameters 
 

Coefficient Estimate Std error z value Pr(>|z|) 

(Intercept) −689.4 3.34 −206.4 < 2e-16 

cos(2 * pi * year/12) −0.0466 0.0003944 −118.2 < 2e-16 

Year 95.59 0.1907 501.4 < 2e-16 

GDP per capita 0.6588 0.003607 182.6 < 2e-16 

Real exchange rate −0.09316 0.001949 −47.8 < 2e-16 

Price −0.1575 0.0008366 −188.2 < 2e-16 

Political index 0.2015 0.005857 34.4 < 2e-16 

Distance −4.013 0.3457 −11.6 < 2e-16 

Visa −3.851 0.5241 −7.3 2,02E-13 

Cluster2 2.016 0.02388 84.4 < 2e-16 

Cluster3 −0.09517 0.01418 −6.7 1,90E-11 

Cluster4 0.5449 0.0135 40.4 < 2e-16 

Cluster5 1.032 0.01346 76.7 < 2e-16 

Cluster6 0.667 0.01325 50.4 < 2e-16 

Cluster7 1.284 0.01354 94.9 < 2e-16 
 

Source: own elaboration using the blme package for R. 

 

The Bayesian model has a better adjustment with respect to the normal model (113.9%), 

which is reflected in a decrease in the SMAPE error indicator to 49.7% and an RMSE of 

2967.59. Furthermore, as more random effects are added to the model, the adjustment 

improves, as seen in Table 5. Thus, the adjustment indicators for the Bayesian models 

show models with one, two, three, and four random effects; this is similar to the previous 

GLMM model type, wherein the model adjustment quality is improved when the number 

of random effects is increased. In addition, in the first case (one random effect), a non-
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informative distribution was used for the fixed parameters; however, from the second 

onwards, the prior Normal distribution was used, and its benefit can be seen in the lowest 

SMAPE values (38.66%), with RMSE = 2005.83 and coefficient values consistent with 

those of the other models, therefore, that model is chosen as the best model. 

 

Real exchange rates represent important effects in GLMM, but price is also important 

and economically different. The first measure considers the competitiveness of tourism 

services; relative prices measure a country’s economic lifestyle (in effect, explaining 

how expensive a country is). Statistical forecasting techniques and econometric models 

can consider two non-linear combinations (time and quadratic time) for one variable and 

take advantage of the statistical learning required to optimize the adjustment. 

 

To test the consistency of the REER effect, with or without price, a sample including 

different countries (from Europe and North America), shows the same negative value in 

the model’s effect. This result is consistent with trends observed in countries such as 

Argentina and Costa Rica. In addition, 11 of 42 countries (26%) had negative correlation 

values among arrivals and REER, and 19 (45%) had a correlation below 0.3. Globally, 

49 of 166 countries (30%) had negative correlations and 89 (54%) had a correlation 

below 0.3. This result uses a current estimation strategy called statistical learning, which 

achieves advantages from the data by decreasing error and variability. For example, 

using variables as clusters, as well as others related to dollar values and relative prices, 

improves the estimation and is consistent with other statistics, such as correlations. 

 

However, it can be seen that the overall effect of lree and the correlation is negative and 

significant regarding tourist arrivals. This indicates that the negative effect of this 

covariate has a prevailing influence on tourist arrivals. 

 

Table 5: Review of setting indicators for the Bayesian mixed linear models. 
 

Number of Random effects 1 2 3 4 

SMAPE(%) 49.70736 41.63011 39.85239 38.65872 

RMSE 2967.586 2771.549 2731.578 2005.825 
 

Source: own elaboration using the blme package for R. 

 

Common effects are found in the different modeling approaches. Time has a positive 

effect on tourist flow; namely, there is a positive tendency in that the number of arrivals 

is higher as time progresses. In addition, in most models, where distance is significant, 

it is inversely proportional to arrivals (different from the information shown in the panel 

data model); that is, the greater the distance, the fewer the number of tourists. This is, 

however, not significant in many models. Conversely, the exchange rate always has a 

negative effect, such that the higher the value of the dollar, the lower the number of 

tourists. The fact of bordering Colombia also increases arrivals; the arrivals decrease 

with respect to the countries for which visas are required. In some cases, a common 

language appears to be significant with a positive value, indicating that sharing a 

language increases the amount of arrivals. Having a direct flight is also related positively 

to tourist flow. 
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5. CONCLUSIONS 

 

A review of the literature shows that significant factors for tourist attraction to a 

destination include the development conditions in the country, incomes, relative prices, 

exchange rates, and travel costs. Other factors are distance between countries, 

geographical conditions, and institutional conditions. Some hypotheses found in the 

literature, such as the inverse relation of distance with the entry of international tourists, 

were tested in this study. GLMMs reflected some relevant variables in all estimated 

functional forms, such as how the variable for common border and language was linked 

with increasing tourism; this allowed for evidence to be provided for the associations 

raised. 

 

The findings for the most important results of literature show that certain economic 

variables, such as exchange rate, GDP, and political stability indicators, are determinants 

for tourist flows to Colombia. The depreciation of the peso-dollar exchange rate provides 

a greater motivation for inbound tourism, a motivation that is also found in countries 

with better security guarantees and economic and political stability, verifying the 

information that found in other tourism studies. Conversely, the variable of distance has 

a significant effect in some GLMMs with an inverse effect on tourism because distance 

presented significant negative effects, indicating that people from the nearest countries 

travel more, which verifies the information shown in the descriptive graphics and is also 

in accordance with the literature reviewed. Countries sharing a language or having a high 

percentage of Spanish speakers with high political indices result in large numbers of 

visits to Colombia. The category of shared official language includes Spain, and the 

category of having a large number of Spanish speakers includes the United States. Thus, 

these countries send large numbers of visitors, although these countries are not close to 

Colombia. Although there has been a historical link with the countries of the Andean 

Community, there are fewer visitors. Tourism dynamics also reflect the existence of 

positive trends, as was observed in the high value and significance of the coefficient 

accompanying time. 

 

The results obtained by this work may be useful for decision makers in the tourism sector. 

Policymakers may resort to the knowledge of the variables, those that may have an 

impact on the basis of their policies, to support and strengthen the growth of the tourism 

industry. This is of greater importance when the attention addresses the impacts entailed 

by the peace agreements signed by the guerrilla forces that exerted control over territories 

with high potential for tourism. In this sense, policies could be oriented to leverage 

territorial development. Projects oriented toward the sustainable management of these 

territories’ biocultural assets are exploited by the communities that propose undertakings 

around scientific tourism. In addition, a community’s appropriate scientific knowledge 

relates to its existing environment, ecosystem, and biocultural relationships. 

Contributing to these regions’ development are income-generating, sustainable, 

community-based tourism alternatives. These programs eschew large volumes of tourists 

in favor of more specialized tourists who have the potential to produce the same or 

greater amount of income. 
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In summary, initiatives that avoid high-volume tourism’s social and environmental 

problems with a more responsible solution will change a country’s form of tourism. This 

should produce positive impacts while simultaneously preserving the systemic and 

socioeconomic conditions of tourist areas, which were controlled by illegal forces in the 

past. Finally, some of the results show a growing number of necessities for optimizing 

strategies such as adequate planning, improving services, and enhancing tourist 

attraction, for example, through marketing strategies, resource management, or 

increasing inventory stocks in hotels for the more affluent tourism periods. 
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